Contiki 2.6

process.c

Go to the documentation of this file.
00001 /*
00002  * Copyright (c) 2005, Swedish Institute of Computer Science
00003  * All rights reserved.
00004  *
00005  * Redistribution and use in source and binary forms, with or without
00006  * modification, are permitted provided that the following conditions
00007  * are met:
00008  * 1. Redistributions of source code must retain the above copyright
00009  *    notice, this list of conditions and the following disclaimer.
00010  * 2. Redistributions in binary form must reproduce the above copyright
00011  *    notice, this list of conditions and the following disclaimer in the
00012  *    documentation and/or other materials provided with the distribution.
00013  * 3. Neither the name of the Institute nor the names of its contributors
00014  *    may be used to endorse or promote products derived from this software
00015  *    without specific prior written permission.
00016  *
00017  * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
00018  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020  * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
00021  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00022  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
00023  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00024  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00025  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
00026  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
00027  * SUCH DAMAGE.
00028  *
00029  * This file is part of the Contiki operating system.
00030  *
00031  * @(#)$Id: process.c,v 1.12 2010/10/20 22:24:46 adamdunkels Exp $
00032  */
00033 
00034 /**
00035  * \addtogroup process
00036  * @{
00037  */
00038 
00039 /**
00040  * \file
00041  *         Implementation of the Contiki process kernel.
00042  * \author
00043  *         Adam Dunkels <adam@sics.se>
00044  *
00045  */
00046 
00047 #include <stdio.h>
00048 
00049 #include "sys/process.h"
00050 #include "sys/arg.h"
00051 
00052 /*
00053  * Pointer to the currently running process structure.
00054  */
00055 struct process *process_list = NULL;
00056 struct process *process_current = NULL;
00057  
00058 static process_event_t lastevent;
00059 
00060 /*
00061  * Structure used for keeping the queue of active events.
00062  */
00063 struct event_data {
00064   process_event_t ev;
00065   process_data_t data;
00066   struct process *p;
00067 };
00068 
00069 static process_num_events_t nevents, fevent;
00070 static struct event_data events[PROCESS_CONF_NUMEVENTS];
00071 
00072 #if PROCESS_CONF_STATS
00073 process_num_events_t process_maxevents;
00074 #endif
00075 
00076 static volatile unsigned char poll_requested;
00077 
00078 #define PROCESS_STATE_NONE        0
00079 #define PROCESS_STATE_RUNNING     1
00080 #define PROCESS_STATE_CALLED      2
00081 
00082 static void call_process(struct process *p, process_event_t ev, process_data_t data);
00083 
00084 #define DEBUG 0
00085 #if DEBUG
00086 #include <stdio.h>
00087 #define PRINTF(...) printf(__VA_ARGS__)
00088 #else
00089 #define PRINTF(...)
00090 #endif
00091 
00092 /*---------------------------------------------------------------------------*/
00093 process_event_t
00094 process_alloc_event(void)
00095 {
00096   return lastevent++;
00097 }
00098 /*---------------------------------------------------------------------------*/
00099 void
00100 process_start(struct process *p, const char *arg)
00101 {
00102   struct process *q;
00103 
00104   /* First make sure that we don't try to start a process that is
00105      already running. */
00106   for(q = process_list; q != p && q != NULL; q = q->next);
00107 
00108   /* If we found the process on the process list, we bail out. */
00109   if(q == p) {
00110     return;
00111   }
00112   /* Put on the procs list.*/
00113   p->next = process_list;
00114   process_list = p;
00115   p->state = PROCESS_STATE_RUNNING;
00116   PT_INIT(&p->pt);
00117 
00118   PRINTF("process: starting '%s'\n", PROCESS_NAME_STRING(p));
00119 
00120   /* Post a synchronous initialization event to the process. */
00121   process_post_synch(p, PROCESS_EVENT_INIT, (process_data_t)arg);
00122 }
00123 /*---------------------------------------------------------------------------*/
00124 static void
00125 exit_process(struct process *p, struct process *fromprocess)
00126 {
00127   register struct process *q;
00128   struct process *old_current = process_current;
00129 
00130   PRINTF("process: exit_process '%s'\n", PROCESS_NAME_STRING(p));
00131 
00132   /* Make sure the process is in the process list before we try to
00133      exit it. */
00134   for(q = process_list; q != p && q != NULL; q = q->next);
00135   if(q == NULL) {
00136     return;
00137   }
00138 
00139   if(process_is_running(p)) {
00140     /* Process was running */
00141     p->state = PROCESS_STATE_NONE;
00142 
00143     /*
00144      * Post a synchronous event to all processes to inform them that
00145      * this process is about to exit. This will allow services to
00146      * deallocate state associated with this process.
00147      */
00148     for(q = process_list; q != NULL; q = q->next) {
00149       if(p != q) {
00150         call_process(q, PROCESS_EVENT_EXITED, (process_data_t)p);
00151       }
00152     }
00153 
00154     if(p->thread != NULL && p != fromprocess) {
00155       /* Post the exit event to the process that is about to exit. */
00156       process_current = p;
00157       p->thread(&p->pt, PROCESS_EVENT_EXIT, NULL);
00158     }
00159   }
00160 
00161   if(p == process_list) {
00162     process_list = process_list->next;
00163   } else {
00164     for(q = process_list; q != NULL; q = q->next) {
00165       if(q->next == p) {
00166         q->next = p->next;
00167         break;
00168       }
00169     }
00170   }
00171 
00172   process_current = old_current;
00173 }
00174 /*---------------------------------------------------------------------------*/
00175 static void
00176 call_process(struct process *p, process_event_t ev, process_data_t data)
00177 {
00178   int ret;
00179 
00180 #if DEBUG
00181   if(p->state == PROCESS_STATE_CALLED) {
00182     printf("process: process '%s' called again with event %d\n", PROCESS_NAME_STRING(p), ev);
00183   }
00184 #endif /* DEBUG */
00185   
00186   if((p->state & PROCESS_STATE_RUNNING) &&
00187      p->thread != NULL) {
00188     PRINTF("process: calling process '%s' with event %d\n", PROCESS_NAME_STRING(p), ev);
00189     process_current = p;
00190     p->state = PROCESS_STATE_CALLED;
00191     ret = p->thread(&p->pt, ev, data);
00192     if(ret == PT_EXITED ||
00193        ret == PT_ENDED ||
00194        ev == PROCESS_EVENT_EXIT) {
00195       exit_process(p, p);
00196     } else {
00197       p->state = PROCESS_STATE_RUNNING;
00198     }
00199   }
00200 }
00201 /*---------------------------------------------------------------------------*/
00202 void
00203 process_exit(struct process *p)
00204 {
00205   exit_process(p, PROCESS_CURRENT());
00206 }
00207 /*---------------------------------------------------------------------------*/
00208 void
00209 process_init(void)
00210 {
00211   lastevent = PROCESS_EVENT_MAX;
00212 
00213   nevents = fevent = 0;
00214 #if PROCESS_CONF_STATS
00215   process_maxevents = 0;
00216 #endif /* PROCESS_CONF_STATS */
00217 
00218   process_current = process_list = NULL;
00219 }
00220 /*---------------------------------------------------------------------------*/
00221 /*
00222  * Call each process' poll handler.
00223  */
00224 /*---------------------------------------------------------------------------*/
00225 static void
00226 do_poll(void)
00227 {
00228   struct process *p;
00229 
00230   poll_requested = 0;
00231   /* Call the processes that needs to be polled. */
00232   for(p = process_list; p != NULL; p = p->next) {
00233     if(p->needspoll) {
00234       p->state = PROCESS_STATE_RUNNING;
00235       p->needspoll = 0;
00236       call_process(p, PROCESS_EVENT_POLL, NULL);
00237     }
00238   }
00239 }
00240 /*---------------------------------------------------------------------------*/
00241 /*
00242  * Process the next event in the event queue and deliver it to
00243  * listening processes.
00244  */
00245 /*---------------------------------------------------------------------------*/
00246 static void
00247 do_event(void)
00248 {
00249   static process_event_t ev;
00250   static process_data_t data;
00251   static struct process *receiver;
00252   static struct process *p;
00253   
00254   /*
00255    * If there are any events in the queue, take the first one and walk
00256    * through the list of processes to see if the event should be
00257    * delivered to any of them. If so, we call the event handler
00258    * function for the process. We only process one event at a time and
00259    * call the poll handlers inbetween.
00260    */
00261 
00262   if(nevents > 0) {
00263     
00264     /* There are events that we should deliver. */
00265     ev = events[fevent].ev;
00266     
00267     data = events[fevent].data;
00268     receiver = events[fevent].p;
00269 
00270     /* Since we have seen the new event, we move pointer upwards
00271        and decrese the number of events. */
00272     fevent = (fevent + 1) % PROCESS_CONF_NUMEVENTS;
00273     --nevents;
00274 
00275     /* If this is a broadcast event, we deliver it to all events, in
00276        order of their priority. */
00277     if(receiver == PROCESS_BROADCAST) {
00278       for(p = process_list; p != NULL; p = p->next) {
00279 
00280         /* If we have been requested to poll a process, we do this in
00281            between processing the broadcast event. */
00282         if(poll_requested) {
00283           do_poll();
00284         }
00285         call_process(p, ev, data);
00286       }
00287     } else {
00288       /* This is not a broadcast event, so we deliver it to the
00289          specified process. */
00290       /* If the event was an INIT event, we should also update the
00291          state of the process. */
00292       if(ev == PROCESS_EVENT_INIT) {
00293         receiver->state = PROCESS_STATE_RUNNING;
00294       }
00295 
00296       /* Make sure that the process actually is running. */
00297       call_process(receiver, ev, data);
00298     }
00299   }
00300 }
00301 /*---------------------------------------------------------------------------*/
00302 int
00303 process_run(void)
00304 {
00305   /* Process poll events. */
00306   if(poll_requested) {
00307     do_poll();
00308   }
00309 
00310   /* Process one event from the queue */
00311   do_event();
00312 
00313   return nevents + poll_requested;
00314 }
00315 /*---------------------------------------------------------------------------*/
00316 int
00317 process_nevents(void)
00318 {
00319   return nevents + poll_requested;
00320 }
00321 /*---------------------------------------------------------------------------*/
00322 int
00323 process_post(struct process *p, process_event_t ev, process_data_t data)
00324 {
00325   static process_num_events_t snum;
00326 
00327   if(PROCESS_CURRENT() == NULL) {
00328     PRINTF("process_post: NULL process posts event %d to process '%s', nevents %d\n",
00329            ev,PROCESS_NAME_STRING(p), nevents);
00330   } else {
00331     PRINTF("process_post: Process '%s' posts event %d to process '%s', nevents %d\n",
00332            PROCESS_NAME_STRING(PROCESS_CURRENT()), ev,
00333            p == PROCESS_BROADCAST? "<broadcast>": PROCESS_NAME_STRING(p), nevents);
00334   }
00335   
00336   if(nevents == PROCESS_CONF_NUMEVENTS) {
00337 #if DEBUG
00338     if(p == PROCESS_BROADCAST) {
00339       printf("soft panic: event queue is full when broadcast event %d was posted from %s\n", ev, PROCESS_NAME_STRING(process_current));
00340     } else {
00341       printf("soft panic: event queue is full when event %d was posted to %s frpm %s\n", ev, PROCESS_NAME_STRING(p), PROCESS_NAME_STRING(process_current));
00342     }
00343 #endif /* DEBUG */
00344     return PROCESS_ERR_FULL;
00345   }
00346   
00347   snum = (process_num_events_t)(fevent + nevents) % PROCESS_CONF_NUMEVENTS;
00348   events[snum].ev = ev;
00349   events[snum].data = data;
00350   events[snum].p = p;
00351   ++nevents;
00352 
00353 #if PROCESS_CONF_STATS
00354   if(nevents > process_maxevents) {
00355     process_maxevents = nevents;
00356   }
00357 #endif /* PROCESS_CONF_STATS */
00358   
00359   return PROCESS_ERR_OK;
00360 }
00361 /*---------------------------------------------------------------------------*/
00362 void
00363 process_post_synch(struct process *p, process_event_t ev, process_data_t data)
00364 {
00365   struct process *caller = process_current;
00366 
00367   call_process(p, ev, data);
00368   process_current = caller;
00369 }
00370 /*---------------------------------------------------------------------------*/
00371 void
00372 process_poll(struct process *p)
00373 {
00374   if(p != NULL) {
00375     if(p->state == PROCESS_STATE_RUNNING ||
00376        p->state == PROCESS_STATE_CALLED) {
00377       p->needspoll = 1;
00378       poll_requested = 1;
00379     }
00380   }
00381 }
00382 /*---------------------------------------------------------------------------*/
00383 int
00384 process_is_running(struct process *p)
00385 {
00386   return p->state != PROCESS_STATE_NONE;
00387 }
00388 /*---------------------------------------------------------------------------*/
00389 /** @} */